Accurate Heats of Formation for $\mathbf{B F}_{n}, \mathbf{B F}_{\boldsymbol{n}}{ }^{+}, \mathbf{B C l}_{n}$, and $\mathbf{B C l}_{n}{ }^{+}$for $\boldsymbol{n}=1-3$

Charles W. Bauschlicher, Jr.* and Alessandra Ricca*
Mail Stop-230-3, NASA Ames Research Center, Moffett Field, California 94035

Received: February 1, 1999; In Final Form: March 26, 1999

Abstract

Accurate heats of formation are computed for $\mathrm{BF}_{n}, \mathrm{BF}_{n}{ }^{+}, \mathrm{BCl}_{n}$, and $\mathrm{BCl}_{n}{ }^{+}$, for $n=1-3$. The geometries and vibrational frequencies are determined at the B3LYP level of theory. The energetics are determined at the $\operatorname{CCSD}(\mathrm{T})$ level of theory. Extrapolation to the basis set limit is discussed. Spin-orbit, scalar relativistic, and core-valence correlation are accounted for. The temperature dependence of the heat of formation, heat capacity, and entropy is computed for the temperature range $300-4000 \mathrm{~K}$ and fit to a polynomial.

I. Introduction

The chlorides and bromides of boron are used in plasma processing of semiconductor materials. For example, a weakly ionized discharge of BCl_{3} is used to etch patterns in GaAs and related III-V compounds. The discharge produces atomic chlorine, which is the active species responsible for etching and for the production of a variety of radicals and ions. BF_{3} is used in a similar capacity in silicon-integrated circuit manufacturing. Despite their commercial uses, our understanding of their chemistry is incomplete; for example, the ionization potential (IP) of BCl_{2} has not been measured. Furthermore, the uncertainty in some of the BX_{n} thermochemistry is larger than desired. For example, the JANAF ${ }^{1}$ heat of formation for BF_{2} differs from that of Lau and Hildenbrand ${ }^{2}$ by more than $20 \mathrm{kcal} / \mathrm{mol}$. With this in mind, it is not surprising to find that some of these species have been studied using computational chemistry techniques. Rablen and Hartwig ${ }^{3}$ have computed the atomization energies of BF_{n} species using the G2 and CBS4 approaches. Martin and Taylor ${ }^{4}$ have evaluated the atomization energies of BF and BF_{3} using extremely accurate methods; one conclusion of their work is that the JANAF ${ }^{1}$ heat of formation of the boron atom is incorrect and the value of Storms and Mueller ${ }^{5}$ should be used. Ruscic et al. ${ }^{6}$ and Gurvich et al., ${ }^{7}$ on the basis of a review of the experimental literature, had previously concluded that the JANAF value was too small. Gurvich et al. recommended a value of $135 \pm 1.2 \mathrm{kcal} / \mathrm{mol}$, which is somewhat smaller than the value of Storms and Mueller, $137.4 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$. Schlegel and Harris ${ }^{8}$ have determined the atomization energies for the BCl_{n} systems at the G2 level of theory. Baeck and Bartlett ${ }^{9}$ have computed the vertical and adiabatic IPs of the BCl_{n} systems. We are unaware of a high-level systematic study of the BF_{n}, IPs.

While the G2 approach ${ }^{10}$ has been used to determine many accurate atomization energies, if it has a weakness, it is probably for halide-containing systems. ${ }^{11}$ Therefore, given the interest in these systems, we have reinvestigated them using the same level of theory for all of the species. The methods we use are related to those of Martin and Taylor, except we have accounted for scalar relativistic effects, and therefore we can use their results to calibrate our results for the BF_{n} systems.

II. Methods

Geometries are optimized and the vibrational frequencies computed using density functional theory (DFT). More specif-
ically, we use the hybrid ${ }^{12}$ B3LYP ${ }^{13}$ approach in conjunction with the $6-31+G^{*}$ basis set. ${ }^{14}$ The vibrational frequencies confirm that the species are minima and are used to compute the zero-point energies. The B3LYP geometries are refined using the $6-311+\mathrm{G}(2 \mathrm{df})$ basis set. For $\mathrm{BCl}_{3}{ }^{+}$and $\mathrm{BF}_{3}{ }^{+}$, the geometries and frequencies are also determined using the MP2 level of theory ${ }^{15}$ and using the BP86 functional. ${ }^{16,17}$

Using the B3LYP/6-311+G(2df) geometries, the energetics are computed using the restricted coupled cluster singles and doubles approach ${ }^{18,19}$ including the effect of connected triples determined using perturbation theory, ${ }^{20,21} \operatorname{RCCSD}(\mathrm{~T})$. In these $\operatorname{RCCSD}(\mathrm{T})$ calculations only the valence electrons (the Cl 3 s and 3 p and the B and F 2 s and 2 p) are correlated. We use the augmented correlation-consistent polarized valence (aug-cc-pV) basis sets developed by Dunning and co-workers. ${ }^{22-25}$ Specifically, the triple- ζ (TZ), quadruple- ζ (QZ), and quintuple- ζ (5Z) sets are employed.
The scalar relativistic effect is computed using the DouglasKroll (DK) approach ${ }^{26}$ with only the one-electron terms using the modified coupled pair functional ${ }^{27}$ (MCPF) level of theory. To study the importance of core-valence (CV) correlation and scalar relativistic effects, the CV(TZ) basis set is developed from the aug-cc-pVTZ set. For B and F, the s and p spaces are uncontracted, while for Cl the inner 11 s primitives are contracted to two functions while the inner four p primitives are contracted to one function; the remaining s and the p functions and the polarization functions are uncontracted. To each basis sets two tight d and one tight f even-tempered functions are added with a β of 3.0. Note that the Cl contraction coefficients used in the molecular DK calculations are taken from DK atomic self-consistent-field (SCF) calculations.

We compute the atomization energies with only valence (val) correlation and with core and valence (CV) correlation. The core effect can be computed as $\operatorname{MCPF}(\mathrm{CV})-\mathrm{MCPF}(\mathrm{val})$ or as $\operatorname{MCPF}(\mathrm{DK}, \mathrm{CV})-\mathrm{MCPF}(\mathrm{DK}, \mathrm{val})$, and the scalar relativistic effects as the difference $\operatorname{MCPF}(\mathrm{DK}$, val) $-\mathrm{MCPF}(\mathrm{val})$ or MCPF-(DK,CV)-MCPF(CV). Tests show that the CV and scalar relativistic effects are nearly additive, so we report only the sum of these two effects, computed as $\operatorname{MCPF}(\mathrm{DK}, \mathrm{CV})-\mathrm{MCPF}(\mathrm{val})$.

Several different structures are possible for $\mathrm{BCl}_{3}{ }^{+}$. In this case, we compare the results obtained with the $\operatorname{CCSD}(\mathrm{T})$ approach with those obtained using the Bruekner doubles, BD , approach. ${ }^{28}$ In the BD calculations, the effect of triples (T) or triples and quadruples (TQ) are included using perturbation theory. ${ }^{29}$

TABLE 1: Comparison of the Optimized BF $_{n}$ B3LYP/ 6-311+G(2df) Geometries ${ }^{a}$ with Previous Work

	BF	BF^{+}	BF_{2}	$\mathrm{BF}_{2}{ }^{+}$	BF_{3}	$\mathrm{BF}_{3}{ }^{+}$
Present Work						
state	${ }^{1} \Sigma^{+}$	${ }^{2} \Sigma^{+}$	${ }^{2} A_{1}$	${ }^{1} \Sigma_{g}^{+}$	${ }^{1} A^{\prime}{ }_{1}$	${ }^{2} B_{2}{ }^{\text {b }}$
r (B-F)	1.262	1.212	1.308	1.227	1.313	1.261, 1.764
\angle (FBF)			121.5	180.0	120.0	151.4
Pak and Woods ${ }^{37} \operatorname{CCSD}(\mathrm{~T}) / \mathrm{cc}$-pVTZ						
$r(\mathrm{~B}-\mathrm{F})$					1.313	
Pak and Woods ${ }^{37} \operatorname{CCSD}(\mathrm{~T}) /$ cc-pVQZ						
$r(\mathrm{~B}-\mathrm{F})$					1.310	
Summary in JANAF ${ }^{1}$						
$r(\mathrm{~B}-\mathrm{F})$	1.265		[1.30] ${ }^{\text {c }}$	[1.31]	1.307	
\angle (FBF)			[112]	180.0	120.0	
Dyke et al. ${ }^{36}$						

${ }^{a}$ The bond lengths are in angstroms, and the bond angles, in degrees. ${ }^{b}$ The MP2/6-31+G* geometry is reported. The molecule has $C_{2 v}$, symmetry with one long $\mathrm{B}-\mathrm{F}$ bond and two short $\mathrm{B}-\mathrm{F}$ bonds. The unique FBF angle is given. The B3LYP approach yields a $D_{3 h}$ structure with $r(\mathrm{~B}-\mathrm{F})=1.311 \AA \AA^{c}$ The values in square brackets are estimates.

To improve the accuracy of the results, we extrapolate the $\operatorname{CCSD}(\mathrm{T})$ results to the complete basis set (CBS) limit using the three-point $\left(n^{-4}+n^{-6}\right)$ extrapolation scheme described by Martin. ${ }^{30}$ In a few cases, we only have the results for the TZ and QZ basis sets, and in these cases, we use the two-point n^{-4} extrapolation. ${ }^{30}$ The $\operatorname{RCCSD}(\mathrm{T})$ calculations are performed using Molpro ${ }^{31}$ and the MCPF calculations are performed using Molecule-Sweden, ${ }^{32}$ while all other calculations are performed using Gaussian $94 .{ }^{33}$ The calculations are run on SGI Origin 2000 and IBM RS6000/595 computers. To give some measure of the time required for these calculations, we note that the $\mathrm{BCl}_{3}{ }^{+}$ $\operatorname{CCSD}(\mathrm{T})$ calculations using the aug-cc-pV5Z basis set required 159 h of Origin 2000 time.

The zero-point energies are computed as one-half the sum of the harmonic frequencies. The heat capacity, entropy, and temperature dependence of the heat of formation are computed for the temperature range $300-4000 \mathrm{~K}$ using a rigid rotor/ harmonic oscillator approximation. We include the effect of electronic excitation for the atoms using the data from Moore. ${ }^{34}$ The B3LYP/6-31+G* frequencies are used in these calculations, excluding $\mathrm{BF}_{3}{ }^{+}$where the MP2 frequencies are used. These results are fit in two temperature ranges, 300-1000 and 10004000 K , using the Chemkin ${ }^{35}$ fitting program and following their constrained three-step procedure. We ignore any molecular spin-orbit effects, since we do not treat any linear molecules with degenerate states, and only account for the effect of atomic spin-orbit coupling on the dissociation energy, which we compute as the difference between the lowest J level and the m_{j} weighted average for all J levels. ${ }^{34}$

III. Results and Discussion

The computed geometries are summarized in Tables 1 and 2 and the harmonic frequencies are summarized in Tables 3 and 4. Also included in the tables are selected experimental and previous theoretical results. $\mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$are interesting cases and are discussed in detail below. Excluding these two special cases, our optimized geometries are in good agreement with the experimental values summarized in JANAF but differ from many of the estimated values given in JANAF, shown with square brackets in Tables 1 and 2. Our value for BF^{+}is in good agreement with the experimental value deduced by Dyke et al. ${ }^{36}$

TABLE 2: Comparison of the Optimized BCl_{n} B3LYP/ 6-311 + G(2df) Geometries ${ }^{a}$ with Previous Work

	BCl	BCl^{+}	BCl_{2}	$\mathrm{BCl}_{2}{ }^{+}$	BCl_{3}	$\mathrm{BCl}_{3}{ }^{+}$
Present Work						
state	${ }^{1} \Sigma^{+}$	${ }^{2} \Sigma^{+}$	${ }^{2} A_{1}$	${ }^{1} \Sigma_{g}+$	${ }^{1} A^{\prime}{ }_{1}$	${ }^{2} A^{\prime}{ }_{2}{ }^{\text {b }}$
$r(\mathrm{~B}-\mathrm{Cl})$	1.722	1.600	1.728	1.613	1.747	1.729
$\angle(\mathrm{ClBCl})$			125.9	180.0	120.0	120.0
Baeck and Bartlett ${ }^{\text {(}}$ ($\mathrm{CCSD}(\mathrm{T})$ with their "Basis I")						
$r(\mathrm{~B}-\mathrm{Cl})$	1.755	1.626	1.746	1.633	1.755	1.741
$\angle(\mathrm{ClBCl})$			124.6	180.0	120.0	120.0
Baeck and Bartlett ${ }^{9}(\mathrm{CCSD}(\mathrm{T})$ with cc-pVTZ basis)						
$r(\mathrm{~B}-\mathrm{Cl})$	1.720	1.602	1.720	1.610		
$\angle(\mathrm{ClBCl})$			125.1	180.0		
Schlegel and Harris ${ }^{8}$						
$r(\mathrm{~B}-\mathrm{Cl})$	1.714		1.720		1.735	
$\angle(\mathrm{ClBCl})$			125.3		120.0	
		Summ	y in JA	AF^{1}		
$r(\mathrm{~B}-\mathrm{Cl})$	1.716	$[1.73]^{c}$	[1.73]	[1.74]	1.75	
$\angle(\mathrm{ClBCl})$			[112]	[180.0]	120.0	

${ }^{a}$ The bond lengths are in angstroms, and the bond angles, in degrees. ${ }^{b}$ The B3LYP/6-311+G(2df) $D_{3 h}$ results are given. At the MP2 and $\operatorname{CCSD}(\mathrm{T})$ levels of theory we find the most stable structure to have $C_{2 v}$ symmetry with two long and one short $\mathrm{B}-\mathrm{Cl}$ bond. Baeck and Bartlett also found the $C_{2 v}$ structure to be the most stable. ${ }^{c}$ The values in square brackets are estimates.

The agreement between our geometries and previous theory is very good. For BF_{3} our DFT value of $1.313 \AA$ is in good agreement with the $\operatorname{CCSD}(\mathrm{T})$ results of Pak and Woods, ${ }^{37} 1.313$ and $1.310 \AA$ for the cc-pVTZ and cc-pVQZ basis sets, respectively. Our DFT BCl_{n} geometries are in good agreement with the $\operatorname{CCSD}(\mathrm{T})$ results of Baeck and Bartlett, ${ }^{9}$ especially for their larger cc-pVTZ basis set. Our computed results also agree with the MP2/6-31G(d) results of Harris and Schlegel. ${ }^{8}$ Our computed harmonic frequencies, excluding $\mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$, are in good agreement with experiment ${ }^{36,38-41}$ and with previous theory (not given in the tables).

Haller et al. ${ }^{42}$ suggested that $\mathrm{BF}_{3}{ }^{+}$does not have $D_{3 h}$ symmetry but instead has one long and two short $\mathrm{B}-\mathrm{F}$ bonds, denoted 1 L 2 S ; the species is planar with $C_{2 v}$ symmetry. For $\mathrm{BCl}_{3}{ }^{+}$, Baeck and Bartlett found three species, the $D_{3 h}, 1 \mathrm{~L} 2 \mathrm{~S}$, and a second $C_{2 v}$, species with two long and one short $\mathrm{B}-\mathrm{F}$ bonds, denoted 2L1S. We therefore started the B3LYP optimizations for $\mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$from all three structures, and in all cases, the B3LYP approach converged to the $D_{3 h}$ structure. For $\mathrm{BF}_{3}{ }^{+}$, the BP86 functional also yields the $D_{3 h}$ structure, but the vibrational frequencies are very different from those obtained using the B3LYP functional. For $\mathrm{BCl}_{3}{ }^{+}$the B3LYP and BP86 harmonic frequencies are similar. For both $\mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$, the DFT vibrational frequencies are not in good agreement with experiment. Thus the DFT approach may not be appropriate for the study of these systems, especially for $\mathrm{BF}_{3}{ }^{+}$where the BP86 and B3LYP harmonic frequencies differ. Given the potential problem with the DFT description, the geometries were optimized and the harmonic frequencies determined at the MP2/ $6-31+G^{*}$ level of theory. Unlike the B3LYP, the MP2 approach yields three minima for both $\mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$. For $\mathrm{BF}_{3}{ }^{+}$the 1L2S structure was the most stable at the MP2 level, while for $\mathrm{BCl}_{3}{ }^{+}$the 2L1S structure was the most stable.

The 1L2S structure of $\mathrm{BF}_{3}{ }^{+}$is best viewed as $\mathrm{BF}_{2}{ }^{+}$with a weakly bound F atom. Since the polarizability of F is underestimated using the $6-31+\mathrm{G}^{*}$ basis, the MP2 calculations were repeated using the aug-cc-pVTZ basis set. The $\mathrm{B}-\mathrm{F}$ distances contracted slightly from 1.261 to $1.254 \AA$ and from 1.764 to $1.713 \AA$. Optimization of the 1L2S structure at the $\operatorname{CCSD}(\mathrm{T})$ level using the aug-cc-pVTZ basis yields essentially the same

TABLE 3: $\mathbf{B F}_{\boldsymbol{n}}$ Frequencies (Intensities) in $\mathbf{c m}^{-1}(\mathbf{k m} / \mathrm{mol})$

neutral		cation				
B3LYP	expt^{a}	B3LYP	$\mathrm{MP}^{\text {b }}\left(D_{3 h}\right)$	MP2 (2L1S)	MP2 (1L2S)	expt
BF						
1362 (174)	1410.3	1670 (186)				1765 ± 20^{c}
BF_{2}						
508 (23.7)	523.7	452 (146)				
		452 (146)				
1132 (109)	1151.4	1013 (0.0)				
1388 (398)	1394.0	2056 (458)				
BF_{3}						
468 (13.8)	480.7	94 (20.1)	$415 \text { (77.3) }$	398 (41.7)	251 (4.6)	
468 (13.8)	480.7	94 (20.1)	415 (77.3)	455 (13.7)	287 (73.6)	
618 (109)	696.7	553 (114)	555 (110)	523 (123)	432 (210.8)	
875 (0.0)	888	851 (0.0)	836 (77.3)	872 (2.4)	532 (129)	
1438 (470)	1463.3	997 (113)	2218 (7615)	1734 (467)	1047 (105)	
1438 (470)	1463.3	997 (113)	2218 (7615)	3583 (>10 ${ }^{5}$)	1880 (472)	$1661.6^{\text {d }}$
${ }^{a} \mathrm{BF}$ and BF_{3} $6-31+G^{*}$ ba	from th Referenc	tion in JANA Reference 40	BF_{2} is taken	acox and Thom	${ }^{b}$ The MP2 results are computed usin	

TABLE 4: $\mathbf{B C l}_{n}$ Frequencies (Intensities) in $\mathbf{c m}^{-1}(\mathbf{k m} / \mathbf{m o l})$

neutral		cation				
B3LYP	expt^{a}	B3LYP	$\mathrm{MP}^{\text {b }}$ ($D_{3 h}$)	MP2 (2L1S)	MP2 (1L2S)	expt
BCl						
819 (253)	828.9	1137 (165)				
BCl_{2}						
287 (1.3)		291 (18.1)				
		291 (18.1)				
689 (29.1)	731	564 (0.0)				
969 (430)	967	1454 (564)				1436.3^{c}
BCl_{3}						
260 (0.7)	243.0	163 (9.4)	298 (81)	236 (2.9)	60 (0.1)	
260 (0.7)	243.0	163 (9.4)	298 (81)	255 (13.0)	243 (4.9)	
453 (6.9)	407.6	415 (5.7)	430 (3.9)	398 (6.9)	409 (9.6)	
472 (0.0)	471.0	474 (0.0)	497 (0.0)	488 (0.6)	425 (5.5)	
946 (389)	986.3	823 (11.5)	1587 (12316)	1172 (457)	752 (122)	
946 (389)	986.3	823 (11.5)	1587 (12316)	8323 (>10 ${ }^{5}$)	1153 (329)	$1090{ }^{\text {d }}$

${ }^{a} \mathrm{BCl}$ is taken from Huber and Herzberg, ${ }^{41} \mathrm{BCl}_{2}$ from Miller and Andrews, ${ }^{38}$ and BCl_{3} from the tabulation in JANAF. ${ }^{1}{ }^{b}$ The MP2 results are computed using the $6-31+\mathrm{G}^{*}$ basis set. ${ }^{c}$ Reference 39. ${ }^{d}$ Reference 38.
structure as the MP2. The MP2/aug-cc-pVTZ vibrational frequencies are not significantly different from the MP2/6$31+G^{*}$ results given in Table 3. Overall, the 1L2S result agrees the best with experiment, but the agreement is qualitative. At the $\operatorname{CCSD}(\mathrm{T})$ /aug-cc-pVTZ level of theory, the 1L2S structure is 0.55 eV below the $D_{3 h}$ structure. The 2L1S structure is only 0.09 eV above 1L2S. Thus, while the ground state of $\mathrm{BF}_{3}{ }^{+}$ probably has a 1L2S structure, we cannot completely rule out the 2L1S structure. It is clear, however, that the structure is not $D_{3 h}$, and as discussed below, a distortion away from $D_{3 h}$ symmetry is consistent with the ionization spectra of BF_{3}.

For $\mathrm{BCl}_{3}{ }^{+}$, we found 2L1S to be the most stable structure at the MP2 level, as found by Baeck and Bartlett. However, at this level, the agreement between theory and experiment is poor; in fact, the frequency of the highest band and its intensity show the symptoms of symmetry breaking (see Table 4). This is also true of the highest MP2 frequency of the $D_{3 h}$ structure. Therefore, the relative separations between the different structures were considered at several levels of theory, which are summarized in Table 5. At the spin-restricted HF level, the 1L2S structure is the most stable, but once correlation is included, 2L1S is the most stable. Improving the basis set to aug-cc-pVQZ increases the $\operatorname{CCSD}(\mathrm{T})$ separation between the 2L1S and 1L2S structures, suggesting that the true structure is either 2L1S or $D_{3 h}$. Reducing the size of the basis set from aug-cc-pVTZ to $6-31+\mathrm{G}^{*}$ still places the 2 L 1 S structure below the $D_{3 h}$ structure,

TABLE 5: Separations between the $\mathrm{BCl}_{3}{ }^{+}$Structures, in kcal/mol

method	2L1S	$D_{3 h}$	1L2S
At the Baeck and Bartlett Geometries			
RHF/aug-cc-pVTZ	0.0	14.81	-7.30
RCCSD/aug-cc-pVTZ	0.0	7.41	3.67
RCCSD(T)/aug-cc-pVTZ	0.0	4.75	5.44
RHF/aug-cc-pVQZ	0.0	14.80	-6.81
RCCSD(T)/aug-cc-pVQZ	0.0	4.92	27.74
RHF/6-31+G**	0.0	12.18	
RCCSD/6-31+G*	0.0	3.97	
RCCSD(T)/6-31+G*	0.0	1.67	
UHF/6-31+G*	0.0	12.55	
UMP2/6-31+G*	0.0	0.96	
UCCSD/6-31+G*	0.0	3.88	
UCCSD(T)/6-31+G*	0.0	1.70	
UBD-REF/6-31+G*	0.0	12.90	
UBD/6-31+G*	0.0	4.04	
UBD(T)/6-31+G*	0.0	1.72	
UBD(TQ)/6-31+G*	0.0	1.71	
At the UMP2/6-31+G* Geometry			
UMP2/6-31+G*	0.0	1.06	5.47
a The geometries are their MBPT(2)/basis I results.			

and this is the basis set that we used to study the correlation treatment in more detail. First we note that changing from spinrestricted to spin-unrestricted does not make a significant difference. The $\mathrm{BD}(\mathrm{TQ})$ approach gives results very similar to

TABLE 6: Summary of the $\operatorname{CCSD}(T)$ Ionization Potentials, in eV

	TZ	QZ	5 Z	CBS	+other ${ }^{a}$	+SO	expt
Adiabatic IPs							
B	8.211	8.230	8.240	8.251	8.249	8.250	8.298
BF	11.069	11.077	11.082	11.088	11.070		11.12 ± 0.01^{36}
BF_{2}	8.579	8.576	8.581	8.588	8.604		8.84 ± 0.10^{2}
$\mathrm{BF}_{3}\left(D_{3 h}\right)$	16.045	16.131	16.161	16.187	16.042		
BF_{3} (1L2S)	15.566	15.654		15.70	$15.61{ }^{\text {b }}$		15.55 ± 0.04^{43}
Vertical IPs							
BF	11.130	11.156	11.165				11.12 ± 0.01^{36}
BF_{2}	10.285	10.314	10.324				
BF_{3}	16.044	16.131		16.18			$15.99{ }^{\text {c }}$
Adiabatic IPs							
BCl	9.950	9.975	9.975	9.970	9.942		10.03 ± 0.10^{44}
BCl_{2}	7.285	7.332	7.332	7.321	7.310		
$\mathrm{BCl}_{3}\left(D_{3 h}\right)$	11.709	11.813	11.839	11.856	11.770		
$\mathrm{BCl}_{3}(2 \mathrm{~L} 1 \mathrm{~S})$	11.511	11.613		11.67	$11.62^{\text {d }}$		11.60 ± 0.02^{45}
Vertical IPs							
BCl	10.161						
BCl_{2}	8.721						
BCl_{3}	11.725			$(11.87)^{e}$			$11.81{ }^{f}$

${ }^{a}$ Includes zero-point energy, core correlation, and scalar relativistic effects. ${ }^{b}$ Computed using the B3LYP frequencies for BF_{3} and the MP2 frequencies for $\mathrm{BF}_{3}{ }^{+} .{ }^{c}$ Estimated from the figure of experimental data; ${ }^{43}$ the uncertainty is unknown. ${ }^{d}$ Includes only core correlation and scalar relativistic effects. ${ }^{e}$ Estimated using the difference between the CBS and TZ $D_{3 h}$ adiabatic results. ${ }^{f}$ Estimated from the figure of experimental data; ${ }^{45}$ the uncertainty is unknown.
the $\operatorname{CCSD}(\mathrm{T})$ approach. Using the MP2/6-31+G* geometry (or MP2/aug-cc-pVTZ geometry) instead of that from Baeck and Bartlett does not significantly affect the results. The inclusion of core-valence and scalar relativistic effects favor the $D_{3 h}$ structure by $0.15 \mathrm{kcal} / \mathrm{mol}$.

For $\mathrm{BCl}_{3}{ }^{+}$it is clearly difficult to definitively determine the structure. The computed separations support a 2 L 1 S structure, while the frequencies appear to support a 1L2S structure. The infrared experiments ${ }^{38,39}$ have been interpreted in terms of a $D_{3 h}$ symmetric cation. Because of the small energy differences involved, we are unable to contradict this conclusion of a $D_{3 h}$ structure.

The ionization potentials have been measured ${ }^{2,36,43-45}$ for several of these species, and we compare the computed results with experiment in Table 6. The computed values for B and BF , where there is no question about geometry, are in excellent agreement with experiment. Also note that both theory and experiment agree that the vertical and adiabatic IP of BF are very similar. The value for BF_{2} is in reasonable agreement with experiment; ${ }^{2}$ clearly the true value must lie at the lower end of the experimental range or even slightly smaller. For BF_{3}, Dibeler and Liston ${ }^{43}$ determined a value of 15.55 eV . Using the B3LYP $D_{3 h}$ geometry for the cation yields an adiabatic IP of 16.04 eV , which is clearly too large. However, using the MP2/6-31+G* IL2S geometry yields a value that is in much better agreement with experiment, with the difference between theory and experiment being only 0.06 eV . An inspection of the experimental spectra shows a peak at about 15.99 eV , which is in reasonable agreement with our vertical IP. Thus a comparison of the computed and experimental IPs for BF_{3} supports a distorted structure for $\mathrm{BF}_{3}{ }^{+}$.

The BCl IP is in good agreement with experiment. ${ }^{44}$ We are unaware of an experimental value for BCl_{2}. For BCl_{3}, the Dibeler and Walker ${ }^{45}$ spectrum shows an onset at 11.60 eV and a maximum at 11.81 eV . Our computed aug-cc-pVTZ results show a vertical value of 11.725 eV . Considering the very small change in geometry between BCl_{3} and $\mathrm{BCl}_{3}{ }^{+}\left(D_{3 h}\right)$, we correct the vertical IP by the difference between the TZ and CBS values $(0.147 \mathrm{eV})$ to yield our best estimate of 11.87 eV for the vertical IP, which is in very good agreement with experiment. The
inclusion of scalar relativistic and core-valence effects will slightly improve this agreement. The adiabatic value of 11.77 eV for the $D_{3 h}$ structure has an error of 0.17 eV with experiment, while the adiabatic value for the 2 L 1 S has an error of only 0.02 eV . Thus the ionization spectra of BCl_{3} would appear to support some distortion for $\mathrm{BCl}_{3}{ }^{+}$. Perhaps the molecule pseudorotates, so that it appears to have $D_{3 h}$ symmetry in the IR experiments. However, the small energy difference and known problems with treating symmetry breaking prevent us from ruling out the $D_{3 h}$ structure deduced from IR experiments. ${ }^{38,39}$

The computed atomization energies are summarized in Table 7. The first three columns are the $\operatorname{CCD}(\mathrm{T})$ results, without zero-point energy. The results in the fourth column are obtained using the three-point $n^{-4}+n^{-6}$ extrapolation procedure, excluding $\mathrm{BF}_{3}{ }^{+}(1 \mathrm{~L} 2 \mathrm{~S})$ and $\mathrm{BCl}_{3}{ }^{+}(2 \mathrm{~L} 1 \mathrm{~S})$, where the n^{-4} approach is used. The results in the fifth column are corrected for zero-point effects using the B3LYP/6-31+G* frequencies, excluding $\mathrm{BF}_{3}{ }^{+}(1 \mathrm{~L} 2 \mathrm{~S})$ where the MP2 frequencies are used. The sixth column uses experiment to account for spin-orbit effects. The last column accounts for core-valence correlation and scalar relativistic effects. It is a bit difficult to estimate the errors in these values; however, on the basis of previous work, we suspect that they are accurate to $\pm 1-2 \mathrm{kcal} / \mathrm{mol}$. We also note that our best atomization energy for BF_{3}, without scalar relativistic effects, is $461.72 \mathrm{kcal} / \mathrm{mol}$, which is in excellent agreement with the best value ($462.63 \mathrm{kcal} / \mathrm{mol}$) of Martin and Taylor.

Our best results from Table 7 are compared with previous work in Table 8. We should note that in the column labeled JANAF, ${ }^{1}$ we have used the B heat of formation from Gurvich et al. ${ }^{7}$ and not the value recommended by JANAF. The heats of formation of $\mathrm{BF}^{+}, \mathrm{BF}_{3}{ }^{+}$, and $\mathrm{BCl}_{3}{ }^{+}$are computed using the JANAF heats of formation for the corresponding neutrals and the experimental IPs. The first observation is the excellent mutual agreement between the theoretical results. The comparison with JANAF shows that for about half the systems theory and JANAF agree, but for half they differ significantly. Given the level of theory used in this work, and the agreement between the different theoretical approaches, it is clear that theory is more consistent and reliable than the values given in JANAF. It is also very interesting to note that the G2 approach

TABLE 7: Summary of the Atomization Energies, in kcal/mol

	TZ	QZ	5Z	CBS	+ZPE	+SO	$+\mathrm{CV}+\mathrm{DK}^{a}$
BF	178.010	180.788	181.402	181.728	179.780	179.365	179.847
BF_{2}	288.830	293.493	294.499	295.009	290.679	289.878	290.711
BF_{3}	460.293	466.805	468.139	468.749	461.075	459.889	460.907
BF^{+}	112.109	115.123	115.859	116.315	113.928	113.543	114.871
$\mathrm{BF}_{2}{ }^{+}$	280.344	285.504	286.643	287.246	281.565	280.795	282.600
$\mathrm{BF}_{3}^{+}\left(D_{3 h}\right)$	279.638	284.604	285.486	285.754	280.628	279.473	281.281
BF_{3}^{+}(1L2S)	290.687	295.597		$298.431^{\text {b }}$	$292.087^{\text {c }}$	290.932	292.558
BCl	118.859	121.305	122.328	123.315	122.143	121.273	121.493
BCl_{2}	195.439	200.170	202.221	204.235	201.455	199.745	200.408
BCl_{3}	312.806	319.681	322.600	325.436	320.663	318.114	318.896
BCl^{+}	78.742	81.053	82.316	83.679	82.053	81.213	82.521
$\mathrm{BCl}_{2}{ }^{+}$	216.792	220.861	223.162	225.673	221.955	220.276	222.146
$\mathrm{BCl}_{3}^{+}\left(D_{3 h}\right)$	232.136	237.055	239.606	242.307	238.216	235.697	237.772
$\mathrm{BCl}_{3}{ }^{+}(2 \mathrm{~L} 1 \mathrm{~S})$	236.695	241.662		$244.528^{\text {d }}$	$240.437{ }^{e}$	237.919	239.849

${ }^{a}$ Includes the effect of core-valence correlation and scalar relativistic effects computed at the MCPF level, see the text. ${ }^{b}$ A comparison of two-point and three-point extrapolation for the $D_{3 h}$ structure suggests that the two-point extrapolation could be about $2 \mathrm{kcal} / \mathrm{mol}$ too large. ${ }^{c}$ The MP2/6-31 $+\mathrm{G}^{*}$ frequencies are used for the zero-point energy. ${ }^{d}$ A comparison of two-point and three-point extrapolation for the $D_{3 h}$ structure suggests that the two-point extrapolation could be about $2 \mathrm{kcal} / \mathrm{mol}$ too small. ${ }^{e}$ The zero-point energy is taken from the $D_{3 h}$ structure since we do not have reliable frequencies for the 2L1S structure.

TABLE 8: Comparison of the Present Work with Previous Results for the Atomization Energies, in kcal/mol

	PW	JANAF ${ }^{\text {a }}$	MT^{4}	RH (G2) ${ }^{3}$	RH (CBS4) ${ }^{3}$	LH^{2}
BF	179.85	180.71	180.13	180.8	178.8	
BF_{2}	290.71	311.87		290.5	289.0	290.9
BF_{3}	460.91	459.90	462.63	462.5	460.0	
BF^{+}	114.87	116.64				
$\mathrm{BF}_{2}{ }^{+}$	282.60	286.62				
BF_{3}^{+}(1L2S)	291-293	294.49				
	PW		JANAF^{a}	SH^{8}	H^{44}	
BCl			129.31	122.95		121.3 ± 1
BCl_{2}			210.32	200.31		
BCl_{3}			315.65	320.15		
BCl^{+}			60.96			81.4 ± 2.6
$\mathrm{BCl}_{2}{ }^{+}$			223.30			
$\mathrm{BCl}_{3}{ }^{+}\left(D_{3 h}\right)$			239.50			
$\mathrm{BCl}_{3}{ }^{+}(2 \mathrm{~L} 1 \mathrm{~S})$						

${ }^{a}$ The JANAF heats of formation of B and B^{+}are not used. The Gurvich et al. ${ }^{7}$ heat of formation is used for B . The value for B^{+}is determined using this value for B and the experimental ${ }^{34} \mathrm{IP}$. JANAF does not have heats of formation for $\mathrm{BF}^{+}, \mathrm{BF}_{3}{ }^{+}$and $\mathrm{BCl}_{3}{ }^{+}$; these values are determined using the JANAF value for the neutral and the experimental ${ }^{36,43,45}$ IPs.
works very well for the BF_{n}, and BCl_{n}, systems; therefore the problem found in other systems is not simply due to the halogen atom. Finally, we note the very good agreement between the present work and the experimental results of Hildenbrand and co-workers. ${ }^{2,44}$

An inspection of the results in Table 8 shows that sequential bond energies vary greatly; $\mathrm{B}-\mathrm{F}=179.9, \mathrm{FB}-\mathrm{F}=110.9$, $\mathrm{F}_{2} \mathrm{~B}-\mathrm{F}=170.2, \mathrm{~B}^{+}-\mathrm{F}=114.9, \mathrm{FB}^{+}-\mathrm{B}=167.7$, and $\mathrm{F}_{2} \mathrm{~B}^{+}-\mathrm{F}$ is about $10 \mathrm{kcal} / \mathrm{mol}$. This can be explained in terms of the boron hybridization; boron does not have to hybridize to form the first bond but must sp^{2} hybridize to form the second bond, which results in a large decrease for the strength of the second bond. The third $\mathrm{B}-\mathrm{F}$ bond forms with the BF_{2} radical orbital, without changing the boron hybridization, and as a result the third bond is about as strong as the first. B^{+}must hybridize to form the first bond, and not surprisingly, the $\mathrm{B}^{+}-\mathrm{F}$ bond is about the same strength as the $\mathrm{FB}-\mathrm{F}$ bond where hybridization occurs. For the $\mathrm{FB}^{+}-\mathrm{F}$ bond there is no change in the boron hybridization, and this bond is similar in strength to the first and third bonds in the neutral. Since B^{+}has only two valence electrons, it is not surprising that the third bond is so small for the cation. Similar arguments apply to the analogous Cl systems.

The heats of formation at 298 K are computed using the sequence $\mathrm{BX}_{3}, \mathrm{BX}_{2}, \mathrm{BX}, \mathrm{B}, \mathrm{B}^{+}, \mathrm{BX}^{+}$, and $\mathrm{BX}_{2}{ }^{+}$. The $\mathrm{BX}_{3}{ }^{+}$ values are not computed, because they are weakly bound and

TABLE 9: Summary of the $\mathbf{B X}_{n}$ Heats of Formation ${ }^{a}$ at 298 K , in $\mathrm{kcal} / \mathrm{mol}$

	$\mathrm{X}=\mathrm{F}$			$\mathrm{X}=\mathrm{Cl}$	
n	neutral	cation b		neutral	
3	$[-271.42]$		$[-96.32]$		
2	-118.91	76.56		-5.92	
1	-25.91	169.57	44.88	187.24	
0	135.95	331.43	138.27	331.43	

${ }^{a}$ The values in square brackets are taken from JANAF, as are the heats of formation of F and $\mathrm{Cl} .{ }^{b}$ The B^{+}heat of formation is derived from the average of the B values deduced from the BF_{n} and BCl_{n} series.
therefore of limited importance in plasma processes, and we do not have accurate vibrational frequencies for these species. The experimental ${ }^{34} \mathrm{IP}$ of B is also used. This approach is used, since the $\mathrm{BF}_{3}, \mathrm{BCl}_{3}, \mathrm{~F}$, and Cl heats of formation are accurately known, ${ }^{1}$ while as discussed in the Introduction, there is some uncertainty in the boron heat of formation. The bond energies are taken from Table 7 and corrected to 298 K . Our heats of formation are given in Table 9. We first note that the values computed for B from the BF_{n} and BCl_{n} series differ by $2.3 \mathrm{kcal} /$ mol, which is consistent with our estimated error of $1-2 \mathrm{kcal} /$ mol. Since the BF_{n} calculations are probably more accurate than the BCl_{n} calculations, we suspect that the true boron heat of
formation is closer to $136 \mathrm{kcal} / \mathrm{mol}$ than $138 \mathrm{kcal} / \mathrm{mol}$, but this is difficult to quantify, so we average our two values for our best estimate ($137.1 \mathrm{kcal} / \mathrm{mol}$) for the boron heat of formation. This is close to the value of $137.4 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$ deduced by Storms and Mueller. ${ }^{5}$ We expect the values for the cations to be about as accurate as the neutrals. Therefore, we believe that our heats of formation are the most consistent set of data for these species. The temperature dependence of the heat of formation, heat capacity, and entropy is computed for the temperature range $300-4000 \mathrm{~K}$ and fit to a polynomial. These data are available on the web. ${ }^{46}$

IV. Conclusions

The atomization energies of $\mathrm{BF}_{n}, \mathrm{BF}_{n}{ }^{+}, \mathrm{BCl}_{n}$, and $\mathrm{BCl}_{n}{ }^{+}$, for $n=1-3$, are computed using the $\operatorname{CCSD}(\mathrm{T})$ results, which have been extrapolated to the complete basis set limit. The ionization potentials are also reported. The structures of $\mathrm{BF}_{3}{ }^{+}$ and $\mathrm{BCl}_{3}{ }^{+}$are studied. $\mathrm{BF}_{3}{ }^{+}$is clearly not $D_{3 h}$, while for $\mathrm{BCl}_{3}{ }^{+}$ our calculations and a comparison of our calculations and the experimental IPs suggest that $\mathrm{BCl}_{3}{ }^{+}$also distorts away from $D_{3 h}$. However, the energy difference between the $C_{2 v}$ and $D_{3 h}$ structures is very small. Thus theory cannot definitely rule out a $D_{3 h}$ structure that has been suggested by the infrared experiments. The temperature dependence of the heat of formation, the heat capacity, and entropy is computed and fit to the standard 14 coefficients, ${ }^{35}$ which are available on the web. ${ }^{46}$

Acknowledgment. A.R. was supported by NASA Contract No. NAS2-14031 to ELORET. These authors would like to acknowledge helpful discussions with Don Hildenbrand.

References and Notes

(1) Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.
(2) Lau, K. H.; Hildenbrand, D. L. J. Chem. Phys. 1980, 72, 4928.
(3) Rablen P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648.
(4) Martin, J. M. L.; Taylor, P. R. J. Phys. Chem. A 1998, 102, 2995.
(5) Storms, E.; Mueller B. J. Phys. Chem. 1977, 81, 318.
(6) Ruscic, B.; Mayhew, C. A.; Berkowitz, J. J. Chem. Phys. 1988, 88, 5580.
(7) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances; CRC Press: Boca Raton, FL, 1994; Vol. 3.
(8) Schlegel, H. B.; Harris, S. J. J. Phys. Chem. 1994, 98, 11178.
(9) Baeck, K. K.; Bartlett, R. J. J. Chem. Phys. 1997, 106, 4604.
(10) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
(11) Ricca, A.; Bauschlicher, C. W. J. Phys. Chem. 1998, 102, 876.
(12) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(13) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
(14) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265 and references therein.
(15) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. Symp. 1976, 10, 1.
(16) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(17) Perdew, J. P. Phys. Rev. B 1986, 33, 8822; 1986, 34, 7406 (erratum).
(18) Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359.
(19) Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1993, 99, 5219.
(20) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
(21) Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718.
(22) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(23) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(24) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358.
(25) Woon, D. E.; Peterson, K. A.; Dunning, T. H. Unpublished.
(26) Hess, B. A. Phys. Rev. A. 1985, 32, 756.
(27) Chong, D. P.; Langhoff, S. R. J. Chem. Phys. 1986, 84, 5606.
(28) Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W. Chem. Phys. Lett. 1989, 164, 185.
(29) Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. J. Phys. Chem. 1990, 94, 5579.
(30) Martin, J. M. L. Chem. Phys. Lett. 1996, 259, 669.
(31) MOLPRO 96 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer, A. J. Stone, and P. R. Taylor. The closed shell CCSD program is described in Hampel, C.; Peterson, K.; Werner, H.-J. Chem. Phys. Lett. 1992, 190, 1.
(32) MOLECULE-SWEDEN is an electronic structure program written by J. Almlöf, C. W. Bauschlicher, M. R. A. Blomberg, D. P. Chong, A. Heiberg, S. R. Langhoff, P.-Å. Malmqvist, A. P. Rendell, B. O. Roos, P. E. M. Siegbahn, and P. R. Taylor.
(33) Gaussian 94, Revision D.1; M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. AlLaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople. Gaussian, Inc.: Pittsburgh, PA, 1995.
(34) Moore, C. E. Atomic energy levels. Natl. Bur. Stand. Circ. (U.S.) 1949, No. 467.
(35) Kee, R. J.; Rupley, F. M.; Miller, J. A. Sandia National Laboratories, SAND87-8215B, 1991.
(36) Dyke, J. M.; Kirby, C.; Morris, A. J. Chem. Soc., Faraday Trans. 2 1983, 79, 483.
(37) Pak, Y.; Woods, R. C. J. Chem. Phys. 1997, 106, 6424.
(38) Miller, J. H.; Andrews, L. J. Am. Chem. Soc. 1980, 102, 4900.
(39) Jacox, M. E.; Irikura, K. K.; Thompson, W. E. J. Chem. Phys. 1996, 104, 8871.
(40) Jacox, M. E.; Thompson, W. E. J. Chem. Phys. 1995, 102, 4747.
(41) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
(42) Haller, E.; Koppel, H.; Cederbaum, L. S.; von Niessen, W.; Bieri, G. J. Chem. Phys. 1983, 78, 1359.
(43) Dibeler, V. H.; Liston S. K. Inorg. Chem. 1968, 7, 1742.
(44) Hildenbrand, D. L. J. Chem. Phys. 1996, 105, 10507.
(45) Dibeler, V. H.; Walker J. A. Inorg. Chem. 1969, 8, 50.
(46) The values can be found at http://www.ipt.arc.nasa.gov.

